- Morning Low :: ≥ 12.63 | < 12.63 | < 12.39 | < 12.03Yield :: ≥ 900 | ≥ 540 | ≥ 230 | ≥ 100 | ≤ 90Morning Low is the voltage before any use, maybe before sunrise :)
Yield is the power used including the inverter. ~ I Indicates Inverter Use (Fridge +)27th January : ML V=12.55⇖Y=40Wh
26th January : ML V=12.63⇖Y=10Wh
25th January : ML V=12.65⇖Y=10Wh
24th January : ML V=12.67⇖Y=10Wh
23rd January : ML V=12.71⇖Y=2 0Wh
22nd January :ML V=12.81⇖Y=40Wh
21st January : ML V=12.64⇖Y=110Wh
20th January : ML V=12.64⇖Y=10Wh
19th January : ML V=12.67⇖Y=30Wh
18th January : ML V=12.74⇖Y=10Wh
17th January : ML V=12.60⇖Y=110Wh
16th January : ML V=12.76⇖Y=130Wh
15th January : ML V=12.75⇖Y=120Wh
14th January : ML V=12.56⇖Y=80Wh
13th January : ML V=12.51⇖Y=60Wh
12th January : ML V=12.61⇖Y=40Wh
11th January : ML V=12.79⇖Y=50Wh
10th January : ML V=12.83⇖Y=10Wh
9th January ::: ML V=12.79⇖Y=10Wh
8th January ::: ML V=12.55⇖Y=10Wh
7th January ::: ML V=12.59⇖Y=10Wh
6th January ::: ML V=12.87⇖Y=30Wh
5th January ::: ML V=12.55⇖Y=10Wh
4th January ::: ML V=12.79⇖Y=110Wh
3rd January ::: ML V=12.55⇖Y=30Wh
2nd January :: ML V=12.71⇖Y=10Wh
1st January ::: ML V=12.78⇖Y=10Wh - Morning Low :: ≥ 12.63 | < 12.63 | < 12.39 | < 12.03Yield :: ≥ 900 | ≥ 540 | ≥ 230 | ≥ 100 | ≤ 90Morning Low is the voltage before any use, maybe before sunrise :)
Yield is the power used including the inverter. ~ I Indicates Inverter Use (Fridge +)31st December : ML V=12.75⇖Y=40Wh
30th December : ML V=12.59⇖Y=40Wh
29th December : ML V=12.64⇖Y=100Wh I
28th December : ML V=12.74⇖Y=50Wh I
27th December : ML V=12.83⇖Y=230Wh I
26th December : ML V=12.82⇖Y=10Wh
25th December : ML V=12.83⇖Y=30Wh
24th December : ML V=12.59⇖Y=160Wh
23rd December : ML V=12.54⇖Y=50Wh
22nd December :ML V=12.47⇖Y=20Wh
21st December : ML V=12.43⇖Y=10Wh
20th December : ML V=12.51⇖Y=260Wh I
19th December : ML V=12.57⇖Y=170Wh
18th December : ML V=12.71⇖Y=10Wh
17th December : ML V=12.79⇖Y=40Wh
16th December : ML V=12.86⇖Y=10Wh
15th December : ML V=12.71⇖Y=160Wh
14th December : ML V=12.47⇖Y=110Wh
13th December : ML V=12.??⇖Y=20Wh
Checked electrolyte, all cells had 6mm above joining strut some a little more. Added some 60ml across all cells.
12th December : ML V=12.??⇖Y=310Wh I
11th December : ML V=12.??⇖Y=100Wh I
10th December : ML V=12.83⇖Y=30Wh
9th December ::: ML V=12.79⇖Y=40Wh
8th December ::: ML V=12.55⇖Y=150Wh
7th December ::: ML V=12.59⇖Y=120Wh
6th December ::: ML V=12.87⇖Y=330Wh I
5th December ::: ML V=12.55⇖Y=100Wh
4th December ::: ML V=12.79⇖Y=360Wh I
3rd December ::: ML V=12.55⇖Y=110Wh
2nd December :: ML V=12.62⇖Y=140Wh
1st December ::: ML V=12.81⇖Y=270Wh I From sciencedirect.com
Irreversible Changes of Active Material Caused by Deep Discharge
Deep discharge of batteries often leads to mechanical stresses in the plates, which leads to shedding, poor conductivity, and a diminished lifetime of the system. The active material utilization of a battery is therefore a trade-off against lifetime. Extensive volume changes and crystallographic structure changes during charge and discharge are the most common causes of mechanical stress in battery active materials. In addition, extreme voltages at the end of charge and discharge may initiate unwanted electrode reactions (such as corrosion) and other undesirable reactions (such as gas evolution).An excellent source of info is https://www.sciencedirect.com/topics/engineering/deep-discharge
The most common are lead acid batteries and lithium ion.In the lead acid range there are three common constructions
1. Liquid Electrolyte: The common car battery
2. Gell Electrolyte: Designed with the sulfuric acid in a gel form so it will nor spill
3. AGM: Where the acid although still liquid is held in a glass matt. The advantage is that unlike the gel it is quicker to charge and can take a heavier load due to the mobility of the electrolye. It is permanenlty sealed and can be used in extremely mobile instances as can the gel.The above are also in order of expense.
Lithium Ion there are many variations the most coom being LiFePo (Lithium Iron Pohosphate)
The advantages are
1. the charging rate can be variable as the cells do not need to be fully charged.
2. They are very light weight an
3. can be used in anu porientation.
4. No sulfation.The disadvantages are
1. initial cost
2. They don't last longer than a well looked after lead acid.
3. They are more environmentally difficult to recycle.Given the above although I had considered using an LIFePo even a poorly looked after lead acid may work out a) cheaper and b) more benign to recyle.
- Morning Low :: ≥ 12.63 | < 12.63 | < 12.39 | < 12.03Yield :: ≥ 900 | ≥ 540 | ≥ 230 | ≥ 100 | ≤ 90Morning Low is the voltage before any use, maybe before sunrise :)
Yield is the power used including the inverter. ~ I Indicates Inverter Use (Fridge +)30th November : ML V=12.64 Y=70Wh
29th November : ML V=12.67⇖Y=490Wh I
28th November : ML V=12.69⇖Y=90Wh
27th November : ML V=12.60⇖Y=160Wh
26th November : ML V=12.64⇖Y=610Wh I
25th November : ML V=12.56⇖Y=220Wh
24th November : ML V=12.56⇖Y=100Wh
23rd November : ML V=12.59⇖Y=110Wh
22nd November: ML V=12.63⇖Y=80Wh
21st November : ML V=12.57⇖Y=50Wh
20th November : ML V=12.54⇖Y=40Wh
19th November : ML V=12.51⇖Y=260Wh
18th November : ML V=12.53⇖Y=70Wh
17th November : ML V=12.59⇖Y=20Wh
16th November : ML V=12.67⇖Y=110Wh
15th November : ML V=12.51⇖Y=190Wh
14th November : ML V=12.69⇖Y=10Wh
13th November : ML V=12.63⇖Y=330Wh
12th November : ML V=12.51⇖Y=230Wh
11th November : ML V=12.67⇖Y=30Wh
10th November : ML V=12.51⇖Y=250Wh
9th November ::: ML V=12.59⇖Y=60Wh
8th November ::: ML V=12.67⇖Y=90Wh
7th November ::: ML V=12.67⇖Y=140Wh
6th November ::: ML V=12.61⇖Y=530Wh I
5th November ::: ML V=12.60⇖Y=660Wh I
4th November ::: ML V=12.60⇖Y=340Wh I
3rd November ::: ML V=12.67⇖Y=170Wh
2nd November :: ML V=12.54⇖Y=240Wh
1st November ::: ML V=12.67⇖Y=50Wh From the batteries 12 volts is fed to a mash-up via 16㎜² (110A)
Mash-up for 12 volt distribution.
The heavy cables are 1. from the battery and 2. through the wall to [dist-box1]
The first port of call is a fuse box, from which currently there are three loads.
The main load is the ring-main to the main room. This goes via 20A fuse to a small distribution box in the main room, from which it goes to another distribution box by the computer station.
Nov 20th
12volt supply to fttp gear is via the right switch with the green marker