• Treatment

    Thorough and careful attention to the following steps often will restore a sulphated battery to good operation condition.

    1. Clean battery;
    2. Bring electrolyte level to proper height by adding water;
    3. Put battery on charge at the prescribed finishing rate until full ampere-hour capacity has been put into the battery based on the 8 hour rate. If at any time during these procedures the temperature of the battery exceeds 50° C. reduce the charge rate to maintain temperature at or below this point. If any cell gives low readings (0.20 V less than the average cell voltage of the battery), pull and repair the cell before continuing with the procedure;
    4. After full ampere-hour capacity has been put into the battery, continue the charge at the finishing rate until the specific gravity shows no change for a 4 hour period with readings taken hourly. Record voltage and specific gravity readings. Correct specific gravity readings for temperature. These readings indicate the state of charge;
    5. Place battery on discharge at the 8 hour rate and during the test record individual cell voltages and overall battery voltage at the following time intervals: 15 minutes after test is started, then hourly until voltages on one cell reaches 1.80 and from then on at 15 minute intervals. From this point on the cell voltages should be under constant observation and the time recorded when each cell voltage goes below 1.75 volts. Terminate the test discharge when the majority of the cell voltages reach 1.75 volts, but stop the test before any single cell goes into reversal.
    6. If the battery gives rated capacity no further treatment is required other than normal recharge and equalization of gravity.
    7. If the battery does not deliver near-rated capacity, continue the discharge without adjusting the discharge rate until one or more cells reach 1.0 volts.
    8. Recharge the battery at the finishing rate as described above, again charging until there is no further rise in specific gravity over a 4 hour period, readings being taken hourly.
    9. Discharge again at the 8 hour rate and if the battery gives full capacity, recharge and put into service.
    10. If this procedure does not result in full capacity, repeat once more as noted above.
    11. If battery does not respond to this treatment, it is sulphated to the point where it is impractical to attempt further treatment and battery should be replaced.

    2 TREATMENT

    Thorough and careful attention to the following steps often will restore a sulphated battery to good operation condition using a MMF charger and a Discharger/Analyzer.

    Clean battery;
    Bring electrolyte level to proper height by adding water;

    Initial Charge Current (I) : 4-5% of the battery capacity,
    Constant Voltage (V): 2,4V/cell
    Time of charge: from 12 to 24 hours

    During the charge process keep under control the battery temperature that must not exceed 50°C.

    If any cell gives low readings (0,20 V less than the average cell voltage of the battery), pull and repair the cell before continuing with the procedure.

    4. The sulphated batteries have an high internal resistance; when a sulphated battery is put on charge the battery voltage reaches in few time the value of the Constant Voltage set and the charger current is very low.

    Continuing to keep the battery on charge for long time with this very low current the lead sulphated is removed by the plates. The battery voltage would tend to decrease but the MMF charger increases the charger current to keep the voltage constant to the value set.

    The charge process have to last a long time, from 12 to 24 hours.

    If it's possible, keep under control the specific gravity of the electrolyte. If, during the charge the specific gravity doesn't increase for about 4 hours the charge process can be stopped.

    After the end of the charge process, record the specific gravity of the electrolyte. The density of the electrolyte indicates the state of the charge.

    Place battery on discharge at the 8 hours rate.

    If a unit is used to discharge the battery it's advisable to set the discharger with the following parameters:

    Discharge Current: 1/8 of the battery capacity
    Time of discharge: 8 hours
    Final Battery Voltage: 1,70V/cell

    The discharger is fully automatics and stops the discharge process if the time of discharge or the minimum battery voltage set are reached. During the discharge, keep under control the individual cell voltages and overall battery voltage at the following time intervals: 15 minutes after test is started, then hourly until voltages on one cell reaches 1.80 and, from then, on at 15 minute intervals. Stop manually the discharge process if the voltage of one of the cell falls below 1,60V .

    If the battery, with reference to the discharge parameters set, gives at least the 80% of the rated capacity no further treatment is required other than normal recharge and equalization of gravity.
    If the battery does not deliver near-rated capacity, execute a new charge/discharge process.

    Again charge the battery for long time between 12 or 24 hours and/or until there is no further rise in specific gravity over a 4 hour period, readings being taken hourly. Keep under control the battery temperature.

    ___

    A sulphated battery is one which has been left standing in a discharged condition or undercharged to the point where abnormal lead sulphate has formed on the plates.

    When this occurs the chemical reactions within the battery are impeded and loss of capacity result.

    This document does not cover all the electricity theory and technology involved in the process of sulfation in battery operated system. For more information, please refer to specialized literature.

  • MPPT 75|15 (1)


    S.N. HQ141168 MRR

    Emailed this to Wind and Sun

    >Surprised to see no LED on the Victron when I returned today at 6pm. When I left yesterday at 1pm it was registering a float charge to two Rolls 120Ah batteries that I had just connected in parallel. See [b]comment 1 on https://calstock.org.uk/elf.php/2001/01/01/rolls-batteries[/b]
    >
    >I soon discovered the 20A fuse had blown. I can not understand why. The Victron may well control the voltage and current but it cannot take much more than 8A from the panels. It may voltage adjust internally the 30+ voltage to 15 or less and have the ability to pass 16A to the battery but why it has channelled over 20A through itself is a mystery. I am about to email the vendors.
    >
    >I have repaired the fuse and all seems fine. The power light has been flashing since indicating the Battery Life algorithm is being run.
    >
    >I note, according to the manual, the only situation where the fuse should blow is when the battery is connected with reverse polarity.

    and this to Victron

    >Hello
    >
    >On 6th Nov I bought
    >
    > a Victron 75 | 15
    > an REC 250w panel of 60 cells (nominal: volts 30.2; amps 8.3) (max open volts 37.4) (short circuit 8.86 amps)
    > and two Rolls 120Ah batteries.
    >
    >On 12th Nov I connected the two batteries in parallel, so have 240Ah at 12v. The batteries are fully charged so when I connected them to the Victron and then the PV after 1 minute the yellow LED stayed on showing only a float charge. An hour or two later, around 1pm, I went out for the day and the weather was quite sunny
    >
    >I returned home this overcast and rainy day, 13th Nov at 6pm, to find to my surprise and disappointment, no LED light on the Victron. I discovered the fuse had blow. Once replaced all is fine.
    >
    >Could you tell me what may have happened?
    >
    >Thank you.
    >
    >Roger Lovejoy
    Cornwall, UK

  • Stecca Pro 10|10

    [center][/center]

    Full story »

  • REC 250w Panels

    The 250w panels are 165cm x 99cm 1.6335m^2 so efficiency at 1000watts per m^2 is 15.3% (250 divided by 1634)

    I am a bit put out by the physical size and have thought I probably only needed one not 4 ??

    Initially I set up a single panel to charge one of the old batteries via the Steca Controller which showed some 8amp of charge, burning of all voltage above 14.7

    Now the panel is connected via a Victron MPPT to one of the new Rolls batteries; with no charge readout but in theory providing a max of 20A to the battery.

    For more on charging the rolls

    Emails about damage to corners

    rec damage

    1.To Wind and Sun

    Thanks

    I called today to query the crimping inside each of the corners, image attached; it looks like they have been installed somewhere previously??

    Each corner on all four panels have the same damage.

    2. To REC

    Dear REC people

    I recently bought panels from Wind and Sun UK http://www.windandsun.co.uk/products/Solar-PV-Panels/REC-Solar-PV-Panels#6160

    Every panel has damaged framing on the inside of each corner. The distributor noted, upon checking their stock, that all the remainder had the same indentations and were keen to confirm they were not second hand and under a full guarantee.

    However I am still uncomfortable that such indentations to the frame have occurred and wonder if you would explain how this has occurred.

    Please see image attached, as noted each corner of each panel has been crimped as though they have been fitted to some other framework very forcefully.

    Thank you

    Roger Lovejoy



    4th Jan 2015
    I have finally heard from REC but not before another concern has arisen. There is a gap between the frame and glass panel, which allows water in which will freeze and expand further widening the gap each instance.

    A couple of images to illustrate the gap
    rec gap1 rec gap2

    Comment 3 REC's initial response and my reply.
    Comment 4 REC's brain-dead response and my reply.
  • Morning Star 75|15

  • 14th Day

    Morning Batt 1 voltage before sun rise is picking up 12.48 today. Some 200W yield but half that used. Connected Batt 2 for an hour (15:15 -16.15) just to keep it ticking for a while.